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Executive Summary 
Continuous monitoring of food loss and waste (FLW) is crucial for improving food 

security and mitigating climate change. By measuring quality parameters such as 

temperature and humidity, real-time sensors are technologies that can continuously 

monitor the quality of food and thereby help reduce FLW. While there is enough 

literature on sensors, there is still a lack of understanding on how, where and to what 

extent these sensors have been applied to monitor FLW. In this paper, a systematic 

review of 59 published studies focused on the sensor technologies to reduce food waste 

in food supply chains was performed with a view to synthesising the experience and 

lessons learnt. This review examines two aspects of the field, namely, the type of IoT 

technologies applied and the characteristics of the supply chains in which it has been 

deployed. Supply chain characteristics according to the type of product, supply chain 

stage, and region was examined, while sensor technology explores the monitored 

parameters, communication protocols, data storage, and application layers. This article 

shows that, while due to their high perishability and short shelf lives, monitoring fruit 

and vegetables using a combination of temperature and humidity sensors is the most 

recurring goal of the research, there are many other applications and technologies being 

explored in the research space for the reduction of food waste. In addition, it was 

demonstrated that there is huge potential in the field, and that IoT technologies should 

be continually explored and applied to improve food production, management, 

transportation, and storage to support the cause of reducing FLW. 
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1. Introduction 
 

Reducing food loss and waste (FLW) is a significant concern to many fresh food producers due to its 

high socio-economic costs and its relationship to waste management and climate change challenges 

[1]. First, wasting food when other parts of the world are starving is a moral/social issue [2]. Another 

problem is that the earth's resources are finite and must be handled cautiously [3]. To provide a 

reference as to the maginutude of FLW’s cost to Earth’s resources, food waste carbon footprint has 

been estimated at 3.3 Gt of CO2-eq each year, which represents a 6% of global greenhouse gases (GHG) 

emissions, and also considering that this figure excludes GHG emissions related to land use change, 

deforestation and organic soils management [4]. Furthermore, financial resources are squandered 

when food is produced but not consumed [5]. In fact, the economical costs associated with food waste 

have been estimated at nearly USD 1 trillion per year, of which USD 680 billion correspond to 

economical loses in developed countries and 310 billion in developing ones [4]. The 2030 Agenda for 

Sustainable Development reflects the increased global awareness of the problem, mainly Target 12.3 

calls for reducing food waste along the production and supply chains [6]. 

The FLW can occur throughout the whole supply chain, from the agricultural stage, through producers, 

distributors, and retailers to the consumer level. The percentage of loss varies depending on the food 

product, being exceptionally high for fresh produce, e.g. around 50% of all fruits and vegetables are 

disposed of in the EU each year [7]. About one-third of fruit and vegetable wastes are caused by 

produce perishing between being harvested and reaching the consumer, mainly due to long 

distribution routes and inadequate technologies used in transport and storage [5]. 

The growing food industry and increased demand for long-term food preservation have necessitated 

the development of systems for readily tracking and preserving food freshness and safety [8]. Recently, 

digital tools have become a viable solution for FLW prevention [9,10].  Intelligent identification, 

tracking, monitoring, and management can be achieved with the help of digital tools, such as sensors, 

barcode identification equipment, laser scanners, wireless, mobile, blockchain technologies, global 

positioning systems, and other information sensing equipment [11–13]. These technologies can 

influence the FLW within the broader food security landscape [14] and continuously monitor different 

product types, such as meat, milk, and other food products [8]. These technologies can also facilitate 

the development of alternative food networks that can modify the traditional linear food chain [15]. 

The application of the Internet of Things (IoT), for example, can support the actors to control FLW by 

monitoring food quality, managing food close to its shelf life, and improving the management of 

inventory and store layout. At the same time, sensor technologies can help reduce FLW by 

administering the right physical environment, especially concerning temperature and humidity [16]. 

Different types of technologies are used to collect information on food products, e.g., external and 

internal devices. External devices are attached outside the package; examples of these devices are 
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temperature and physical shock sensors [17]. The second type is placed inside the package, in the 

headspace of the package, or attached to the lid, for example, biosensors and biological growth 

indicators [17]. The internal sensors need a communication tool to communicate their information to 

the users. It is also possible to combine technologies to display food’s features such as time, location, 

and environmental information [18,19]. 

The sensor can be used throughout the whole product's shelf life and supply chain (production, storage, 

distribution, and consumption). In the production stage, the consumption data of water, electricity, 

and other raw materials could be collected by sensing devices installed on manufacturing equipment 

[20]. During the storage stage, food temperature and air humidity can also be collected from sensors 

in warehouses [21]. In the transportation stage, the fuel consumption, weight of product transported, 

and transportation distance can be collected by sensors on vehicles [21]. Environmental emission data 

could be obtained from intelligent sensors and environmental monitoring systems at any stage of the 

supply chain [20]. 

As shown above, the use of new real-time monitoring technologies that are based on IoT is a promising 

new area in food supply chains, with applications in precision, traceability, visibility, and controllability. 

IoT is growing exponentially and can become an enormous source of information. However, although 

it is expected that these new technologies will bring more efficient, and sustainable food chains in the 

near future, little attention has been paid to its potential use in the food sector. Thus, this study 

contributes to the research gap on the lack of understanding of the applications of real-time monitoring 

technologies based on IoT devices in the food sector and the common practices associated with these 

technologies. 

In this sense, it is necessary to study systematically and thoroughly the potential applications of 

intelligent monitoring equipment to reduce food waste issues. To achieve this goal, the study discussed 

in this paper encompasses a systematic literature review to address the following research  

questions: (1) what are the main characteristics of the food supply chain that have used food 

monitoring technologies to date? and (2) what real-time monitoring technologies have been deployed 

for these food supply chain applications? 

The review was conducted by searching for studies published in peer-reviewed indexed journals in an 

electronic database in the last 20 years.  

Scientific articles were first systematically screened via the Web of Science search engine 

(https://www.webofscience.com/). The combined search terms “food waste” or “food loss” and 

“dynamic” or “real-time” or “IoT” and “sensor” on titles, abstracts, and keywords, were considered. 

Only literature reported in English was included in the review scope. Several definitions of food loss 

and waste exist. For this report, food loss and waste are defined as the decrease in quantity or quality 

of food along the food supply chain [22]. Therefore, studies investigating the post-treatment of food 
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waste were integrated into the review scope. Food waste prevention was considered a management 

option; hence life cycle assessment (LCA) studies on this topic were kept in the review.  

 

The literature search resulted in a total of 313 potentially relevant articles. In a second step, all 

proceeding abstracts, review articles, book chapters and grey literature were excluded, and only full-

length articles were selected, totalling 199 articles. In a third step, an additional screening was made 

to check the relevance of the articles. The relevance of each study was assessed based on the abstract 

of the articles; in case of doubt, the entire paper was read. After the additional screening, 59 articles 

were selected for the quantitative analysis. 

 

Before performing the analysis on the selected articles, a brief introduction to the Internet of Things 

(IoT), of which many of the technological solutions are based upon, is provided to aid in conceptual 

understanding for the reader. 

 

2. The Internet of Things 
 

The European Union Agency for cybersecurity (ENISA) defines the Internet of Things as “a cyber-

physical ecosystem of interconnected sensors and actuators, which enable intelligent decision making” 

[25]. Information is at the centre of IoT, feeding into a continuous cycle of sensing, decision-making, 

and actions, as stated in the definition. Anything from a smartwatch to a cruise control system with 

sensors might be considered a "thing" in the Internet of Things (e.g. temperature, humidity, light, 

location, etc.). The communication protocol (Wi-Fi, RFID, Bluetooth, 3G/4G, etc.) are other components 

of the IoT ecosystem and facilitate communication with other machines or humans and computing 

resources. The IoT architecture typically includes four layers, as described in Figure 1. 
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i) Sensing layer: encompasses all devices implemented in the environment, such as sensors (e.g. 

temperature, light, motion and location, etc.), energy supply devices (e.g. batteries, solar panels) and 

other devices that can manage functionalities.  

ii) Communication layer: includes devices that transmit and receive data over the communication 

system directly or via gateways (e.g. receptors and transmitters). It also encompasses all necessary 

communication technologies, wired and wireless, such as Wi-Fi, Zigbee, Bluetooth, 3G/4G, LoRaWAN, 

etc. It provides functionality for the network, i.e. connectivity, mobility, authentication, authorisation, 

and accounting.  

iii) Storage layer: includes data processing and storage, as well as dedicated functionality for each 

application and service, since emerging services have diverse requirements. 

iv) Application and control layer: this layer deals with the analysis of the data retrieved from the storage 

layer allowing the end user to make informed decisions based on computational intelligence methods 

applied to the data. Additionally, it provides applications and services that farmers, retailers, analysts, 

and consumers can employ. Consumers can look for product expiration dates, test reports, quality 

guarantee periods, product photos, and customer evaluations in this layer. It refers to the typical 

management and performance visualisation (i.e. software app, etc.). 

Figure 1 IoT architecture: i) sensing layer, ii) communication layer, iii) storage layer, iv) application and control layer. 
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3. Business Landscape 
Food waste is recognised as a significant threat to food security, the economy, and the environment. 

Efforts to overcome the challenges of reducing this type of waste using IoT technologies over the years 

have been found throughout literature, with solutions documented as early as 2008. According to 

Figure 2, which presents the number of publications per year included in this review, there has been 

an exponential increase in research being conducted in this topic. The increase observed during the 

years is perhaps due to the intensified commercialisation of sensors, which is linked to the increasing 

awareness of the population and companies about the effects of food waste generation. The oldest 

publication selected is from 2008, and the most recent is from 2021 (which is the latest year of this 

review). 

 

 
Figure 2 Number of publications per year. 

 

 

Figure 3 shows the co-occurrence network visualisation of content for the selected publications. In this 

study, the keywords were grouped into three main clusters. The main terms covered in the blue cluster 

are related to IoT, the Internet of things and sensors. The red cluster consists mainly of management, 

food waste, and design terms, while the yellow cluster is more focused on temperature, traceability 

and cold chain.  
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To respond the first research question to understand the common characteristics of the food supply 

chain in which real-time monitoring technologies have been applied, relevant factors (food type, supply 

chain stage, and country) were extracted from each identified study and are presented in Table 1. 

 

Table 1. Selected papers in the chronological order of publication and main characteristics. 

Reference Food type Supply chain stage Country 

Zhu et al. [26] Garlic scape Transportation  China 

Afreen and Bajwa [27] Fruit and vegetables Storage Pakistan 

Torres-Sanchez et al. [28] Lettuces Transportation and storage Spain 

Siddiqui et al. [29] Rice Manufacturing Bangladesh 

Aytaç and Korçak [30] Fast-food Retail Turkey 

Zheng et al. [31] Water Manufacturing  China 

Li [32] Fruit and vegetables Transportation China 

Nair et al. [33] Banana Storage India 

Sharif et al. [34] Perishable products Storage UK 

Ibba et al. [35] Apple and bananas Storage and transportation Italy 

Catania et al. [36] Aromatic herbs Manufacturing Italy 

Lu et al. [37] Perishable products Transportation Taiwan 

Figure 3: Network Visualization of the content. 
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Wang et al. [38] Blueberries, sweet cherries, apples Transportation China 

Feng et al. [[39] Shellfish Storage China 

Zhang et al. [40] Sweet cherry  Transportation China 

Torres-Sánchez et al. [41] Lettuces Transportation and storage Spain 

Urbano et al. [42] Pumpkin and oranges Transportation and retail Spain and Ireland 

Feng et al. [43] Salmon Storage China 

Markovic et al. [44] Meat Transportation UK 

Ramírez-Faz et al. [45] Dairy products, charcuterie, meat, and frozen 

products 

Storage and retail Spain 

Seman et al. [46] Perishable products Storage Malaysia 

Alfian et al. [47] Kimchi  Storage South Korea 

Banga et al. [48] Chickpea Storage India 

Feng et al. [49] Shellfish Transportation and storage China 

Jara et al. [50] Perishable products Transportation Ecuador 

Baire et al. [51] Bread Manufacturing Italy 

Jilani et al. [52] Meat Storage Pakistan 

Mondal et al. [53] Perishable products Manufacturing, transportation, 

storage and retail 

USA 

Lazaro et al. [54] Apple and banana Retail Spain 

Tsang et al. [55] Meat and fruit Storage   China 

Popa et al. [56] Onion Storage Romania 

Tsang et al. [57] Meat and seafood Storage China 

Tsang et al. [58] Apple, Grapefruit, Mango, Melons, Tomatoes Transportation Hong Kong 

Wen et al. [59] Food waste Retail China 

Wang et al. [60] Holly Transportation  China 

Wang et al. [61] Peach Manufacturing, storage, 

transportation, retail 

China 

de Venuto and Mezzina [62] Perishable products Storage Italy 

Morillo et al. [63] Hot and cold meals Transportation Spain   

Chaudhari [64] Perishable products Storage India 

Tervonen [65] Seed potatoes Storage Finland 

Jedermann et al. [66] Banana Transportation Germany 

Xiao et al. [67] Grapes Transportation China 

Tsang et al. [68] Meat, seafood, vegetables, fruits, wine and 

dairy products 

Storage China 

Alfian et al. [69] Kimchi  Transportation and storage South Korea 

Musa and Vidyasankar [70] Blackberry  Transportation and storage Mexico and USA 

Seo et al. [71] Seafood Retail South Korea 

Xiao et al. [72] Seafood (tilapia) Transportation and storage China 

Shih et al. [73] Braised pork rice Production, storage, 

transportation, and retail 

Taiwan 

Thakur and Forås [74] Chilled lamb products Transportation Norway 

Badia-Melis et al. [75] Citric fruits and different varieties of nuts Storage Spain 

Chen et al. [76] Perishable products Transportation Taiwan 

Aung and Chang [77] Banana Transportation South Korea 

Eom et al. [78] Pork meat Transportation and storage South Korea 

Smiljkovikj et al. [79] Grapes Production Macedonia 
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Hafliðason et al. [80] Seafood (cod) Transportation Iceland 

Bustamante et al. [81] Poultry Production Spain 

Faccio et al. [82] Food waste Waste collection Italy 

Wang et al. [83] Perishable products Transportation Hong Kong 

Ruiz-Garcia et al. [84] Fruit Transportation and storage Spain 

*Perishable products include food products in general that were not specified by the authors. 

 

3.1 Product type 

Given that products are what defines a business, categorising the research by the food type monitored 

is a core analysis to perform when examining the business landscape of deployed IoT systems. To 

investigate trends, food type was checked for each identified research paper based on the produce 

being monitored during the real-world testing of the IoT system. Table 1 shows that there are 81 food 

types or applications monitored over the 59 studies, of which 45 are unique. These 45 unique 

monitoring applications can be reduced into the following 9 categories: Fruit (general fruits, banana, 

apple, sweet cherry, blueberry, blackberry, grapes, pumpkin, orange, peach, citric fruit, grapefruit, 

mango), Vegetable (general vegetables, garlic scape, lettuce, kimchi, potato, onion, aromatic herbs, 

tomatoes, melon), Meat (meat, pork, poultry, lamb, charcuterie), Seafood (general seafood, cod, 

salmon, shellfish, tilapia), Cereals & Legumes (chickpea, bread, rice, nuts), Prepared food (fast-food, 

hot and cold meals, braised pork rice), Food Waste, Drinks (Water, Wine) and Other (general 

perishables, frozen food, dairy products, holly). 

Figure 4 presents the synthesis of the findings. The most commonly monitored application is Fruit, 

accounting for 31.71% of the total research. Further, by combining the Fruit and Vegetable categories 

from the analysis performed, this figure increases to almost half (47.56%) of the total screened food 

monitoring applications, which can be explained due to a variety of circumstances. Environmental 

elements, including temperature and relative humidity, influence and contribute to the deterioration 

of these food products. Compared to the other food categories, fruits and vegetables have the highest 

wastage rates, around 40–50% of the total product [85], as a result of their high perishability and short 

shelf lives. Therefore, maintaining the microbiological integrity of fresh fruits and vegetables 

throughout the production and distribution processes can be challenging. 

The analysis found the second most popular application to be that of Seafood and Meat, representing 

21.96% of the total products monitored. The popularity of monitoring these food types is consistent 

with other research which suggests that microbial spoilage is also responsible for a significant amount 

of food waste in the meat and seafood sector. Meat spoilage is primarily caused by three primary 

mechanisms: microbial growth, lipid oxidation and enzymatic reactions [86]. Since they offer a nutrient-

rich environment with high water activity and a pH that is close to neutral and ideal for numerous 

bacterial species growth [87], these foods of animal origin are vulnerable to natural contamination. 
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The Other category also accounts for a significant proportion of food types monitored (15.85%), and 

consists of general perishables, frozen food and dairy products. Of these categories, the majority of the 

research is focused on general perishables (69% of the category; 11.1% overall), which includes food 

products in general that were not specified by the authors. In many of these studies, the methodology 

proposed by the authors is a proof of concept and is not tested in the real world; thus, it could be 

applied to different food categories. Given that the most popular categories of monitoring are Fruit, 

Vegetable, Meat, and Seafood, accounting for 70.37% of all research, it is fair to assume that some of 

the authors of the general perishable studies intended the use of their proposed technology for one of 

these monitoring applications, which would increase their overall contribution. 

The categories of Cereals & Legumes, Prepared food, Food waste, and Drinks, account for the 

remaining 13.58% of the studies. This is good evidence of the diverse nature of Food Loss and Waste 

Monitoring technologies and the innovative ways in which this technology can be applied. 

Figure 4 Business landscape by produce. 
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3.2 Supply Chain Stage 

The supply chain logistics of food products can involve many stages, such as production (crop and 

animal), transportation, manufacturing, storage, retail, and waste collection. The stages of the food 

chain most frequently examined for IoT implementation by the literature under analysis are shown in 

Figure 5. 

 

 
Figure 5 Business landscape by supply chain stage 

Storage is the stage that has received more attention throughout the studies shown in Table 1 (38% of 

all studies), followed by transportation (37%) and retail (12%). Most food products are highly perishable 

and keeping them in good condition during long transportation distances and extended storage times 

is a sensitive problem. To reduce food loss and waste in distribution activities along the food system, it 

is imperative to use and monitor appropriate storage and transport conditions in real-time.  

Good practices that control light, temperature, humidity, oxygen level and hygiene can significantly 

help to reduce losses of perishable products during storage [88]. During the transportation stage, the 

physical characteristics between the upper and lower levels in trucks, ships and airplanes must also be 

controlled and maintained, especially those moving fruits and vegetables between distant countries. 

Temperature control during land transportation can be problematic, particularly at the beginning and 

end of the operation when loading or unloading cargo. During these activities, the temperature can 
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temporarily rise by more than 10 °C in the refrigeration units, which can also increase the food's 

bacterial activity [89]. Even in developed countries, with good temperature management, the number 

of food products perishing during the transportation stage is high (approximately 15% of total food 

produced) [90]. However, as the research under investigation indicated, if alternatives to monitor and 

control the food quality over time were used, including the installation of IoT technology, the vast 

majority of food loss throughout these stages might be minimized. 

 

3.3 Countries of system deployment 

 

Another aspect to consider within the scope of the business landscape of IoT monitoring systems for 

FLW is exploring the regions in which these technologies have been deployed. Therefore, this section 

of the analysis presents the distribution of such deployed/tested systems and contains a discussion of 

potential reasons for their popularity within particular territories. Presented in Table 1, the papers 

under analysis were classed by country of origin based on the location where the IoT system was 

deployed for real-world testing. The 59 studies were conducted over 22 different countries in total. 

Figure 6 presents a visualisation of the distribution of research papers by country. 

 Analysing the region of studies published on real-time technology applications in the food 

sector, an intriguing finding is the large dominance of Chinese articles (26% of the total), followed by 

Spain (15%), Italy (8%), and South Korea (8%). China's high contribution to the development of 

technologies to monitor the condition and quality of food throughout the food chain may be due to 

numerous reasons, for example, China is the world's most populous country and leads the global 

production of various food products. China’s fruit and vegetable production accounts for 38% of global 

output [91]. China is also responsible for one-third of the world's reported fish production as well as 

two-thirds of the world's reported aquaculture production [92]. The perishable nature of these 

products and the high amount of waste produced may have influenced the pursuit of solutions for its 

mitigation. 
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Figure 6 World maps of the distribution of research papers by country. 

However, the scale of both the population and production is unlikely to be the sole contributor to the 

popularity of such IoT monitoring systems within China. For example, India is the world's second most 

populous country and is also the world's second largest producer of fruit and vegetable, accounting for 

12% of the global output [91], yet India is only accountable for 5% of the total research articles 

analysed. 

The disparity lies within the Gross Domestic Product (GDP) of each of the countries, which is often 

inextricably linked to a country's technology adoption. China has the world's second largest economy 

with US$17.7 trillion GDP, compared to India which has a GDP of US$2.6 trillion. It is no coincidence, 

therefore, that China is the world’s largest IoT market with 64% of the 1.5 billion global cellular 

connections [93]. By 2021, the country had also installed over 1.15 million 5G base stations, which 

represents around 70% of the global total [94]. According to a report issued by the Internet Society of 

China [95], China's IoT industry exceeded 1.7 trillion yuan (€241 billion) in 2021 and is expected to reach 

2 trillion yuan this year. In comparison, India’s IoT market was valued at US$4.98 billion in 2020. This 

point can be exacerbated further by looking at the example of Brazil. Brazil is noted to feed 10% of the 

global population and is the 4th largest producer of fruit and vegetable [91], yet from the research 

papers selected in this study none originate from this country. Here, their GDP is valued at US$1.1 

trillion, and the IoT revenue was valued at US$2.28 billion in 2020. As observed, China is helping shape 

the world’s transition to the IoT, which is being driven by the incentives of private industry, and by the 

Chinese state’s sustained policies to boost the role of Chinese actors in IoT development. 

A third explanation for China’s dominance in the research field is due to the introduction of the Anti-

food Waste Law of the People’s Republic of China in April 2021 [96]. This law has been implemented in 

order to guarantee grain security, conserve resources, and protect the environment. Approaching the 

food waste problem by creating a law with sanctions may have encouraged some businesses to take 
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proactive measures such as deploying IoT monitoring technology to aid in the reduction of potential 

food waste. 

Another aspect to consider in this analysis is the geoclimatic nature of the countries and if businesses 

located in particular regions with specific climate systems are more inclined to deploy IoT systems for 

the monitoring and reduction of food waste. The Köppen climate classification is one of the most widely 

used climate classification systems (Figure 8). The system divides climates into five main climate 

groups, with each group being divided based on seasonal precipitation and temperature patterns. The 

five main groups are A (tropical), B (dry), C (temperate), D (continental), and E (polar).  

 

 
 

Figure 7 Köppen climate classification map [97]. 

 

Examining Figure 7, it was observed that the regions of East Asia and Southern Europe both fall under 

the temperate climate classification. Southern Europe is largely dominated by Csa classification which 

is “Warm summer temperate climate” and East Asia is largely dominated by Cwa which is “Warm 

temperate climate”. 70% of the papers selected in this review were based in regions which displayed 

these climatic properties (China, South Korea, Taiwan, Hong Kong, Spain, Italy, Romania, North 

Macedonia, Turkey). One reason for this could be that agricultural production in temperate regions is 

highly productive due to a generally higher nutrient level in the soil [98,99]. A significant proportion of 

global agricultural output originates from these temperate (i.e. non-tropical) countries. Yet while these 

regions offer favourable conditions for agricultural production, the decomposition of foods is also 

accelerated by the warmer climates associated with these climate systems. For example, the Spanish 
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agri-food industry is the country's main manufacturing activity [100], yet temperatures on the Iberian 

Peninsula, a region dominated by the Csa climate system, display a mean of 23 °C in summer months 

and are noted to exceed 45 °C on occasion. Given these warm temperatures, in an attempt to avoid 

the perishment of goods, researchers have been keen to deploy IoT monitoring systems in this region, 

observed by the 15% share of the total research articles under analysis. 

4. Technical Landscape 
 

This section focuses on the technologies employed throughout the literature at each of the layers that 

commonly conform an IoT architecture: the sensing, communication, storage and control, and 

application layers.   

As previously discussed, FLW is a major concern for food producers not only for economic reasons but 

also due to increasing pressure for industries to adopt higher environmentally and socially responsible 

manufacturing practices. In the last decades, developments in sensor and information technology, as 

well as a general trend in the reduction of electronic devices’ cost and size over time, are making it 

increasingly more accessible and affordable for industries in the food supply chain to modernise and 

digitalise their processes and operations [69]. In food processing, for example, the adoption of real-

time sensors allows transitioning from an inferential monitoring and control approach to a continuous 

measurement of key quality parameters in real-time [40].  

The following sections analyse and summarise the designs and technologies found throughout the 

literature, and provide an overview of the current state of real-time sensor applications to mitigate 

FLW in the different stages of the food supply chain, i.e. production, manufacturing, storage, 

transportation, and retail, worldwide. While doing so, the sequence shown in Figure 1 on IoT 

architecture will be followed. 

 

Table 2. Communication technologies used in food safety IoT applications. 

 
Ref Sensing technologies Data communication Data storage and control Applications and softwares 
[26] AM2322, CO2 ATI, O2 ATI 

and ethylene ATI 
WSN, 4G DTU Database server Keil5 and language of C 

[27] DHT-22, MQ-135 and LDR ESP-WROOM-32 Firebase database RTIMNS android app 
[28] LDR NSL06S53 and DHT-22 Wi-Fi  Database server and 

gateway (MicroSD) 
Programmed in MicroPython based on 

Pycom libraries  
[29] ADC, RTC, LCD, temp & 

humidity sensors 
LoRa, GPRS, 3G Cloud server Mobile app based on rESTful API 

[30] - Zigbee, Wi-Fi Cloud server Naïve Bayes, ID3 algorithm, k-means 

[31] High-precision microbial 

sensor 

Zigbee, Wi-Fi, Serial 

communication 

Local HDD  NUC120 and CC2530 softwares 

[32] - 5G - Xilinx software 

[33] MQ2 Wi-Fi Arduino Uno Blynk application 

[34] RFID reader RFID - XGBoost algorithm 

[35] EIS using AD5933 

microcontroller 

Serial communication Local HDD LabVIEW; Matlab; Matlab Zfit 
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[36] 7MH5102-1PD00 load cells, 

DHT-22 temp/RH  

Wi-Fi ThingSpeak (IoT cloud) ThingSpeak online platform 

[37] Temp/RH sensor MQTT MS SQL DB Mobile phone app, bespoke computer 

program (developed in VB)  

[38] ADC ethylene sensor; 

STC12C5A60S2 control chip 

4G Cloud server Keil UVision4 (C language); web 

application and android app 

[39] Temperature, relative 

humidity, O2, CO2 sensor 

node using Zigbee CC2530 

Zigbee, GPRS MS SQL DB PC and Mobile Phone user application 

[40] - Serial communication Local HDD Keil UVision4 (C language); Matlab 

[41] LMT86  Wi-Fi, GPRS Cloud server Multiple Linear Regression / Nonlinear 

Regression 

[42] SHT1x sensor RFID, 3G, 4G, Wi-Fi, 

LoRa, NB-IoT 

Cloud server Orbis Traceability System 

[43] MQ136, MQ 137, MQ 138, 

TGS2612, TGS822, and 

TGS2600 

Zigbee, Serial 

communication 

Local HDD CNN-SVM algorithm 

[44] TGU-4017 and DS18B20  Bluetooth Ledger PROoFD-IT app 

[45] DS18B20 Wi-Fi - ThingSpeak / ThingChart (app) 

[46] DHT-11 Wi-Fi  - Blynk platform based on NodeMCU 

[47] Sense-HAT RFID, Wi-Fi MongoDB Android app developed using Python 

[48] CZN-15E Condenser, DHT-

22 

Serial communication - Audacity; Praat; Linear predictive 

coding 

[49] - WSN WSN Database - 

[50] DS18B20 WSN Arduino Uno - 

[51] DS18B20, SHT10, MQ-7 and 

MHZ19 

Wi-Fi Elasticsearch Kibana tool 

[52] Microwave sensor Bluetooth, Wi-Fi Local HDD Application developed in LabView 

[53] Thermistor-based 

temperature sensor 

RFID Local HDD Spyder IDE 

[54] TCS34725 NFC Cloud server An android application was developed  

[55] CC2650 Bluetooth, Wi-Fi IBM cloud server Food traceability system (BIFTS) 

[56] BME680, DHT-22 and 

MQ5gas 

ZigBee  Excel spreadsheet LabVIEW interface 

[57] CC2650 Bluetooth, Wi-Fi, 3G, 4G Cloud server IoTRMS 

[58] SensorTag CC3200 GPRS (3G, 4G, LTE) My SQL Web application, IBM IoT Watson 

[59] - GPRS (4G) - - 

[60] AM2322, CO2 ATI, ethylene 

ATI 

GPRS (4G) T-LINK database Keil5, T-link 

[61] - GPRS (4G) Cloud server - 

[62] L/H/T sensors ZigBee System's central control 

unit (Raspberry Pi 2 B+) 

Python 2.7 

[63] ADC 2KSPS, Carel 

NTC015HP0 and SensorTag 

CC2650 

WSN, Bluetooth, 3G, 

4G 

IBM cloud server Foodmote, IBM IoT Watson 

[64] Simulation of sensor nodes - IBM cloud server IBM IoT Watson and Apache Spark 

[65] - Serial communication, 

Wi-Fi 

Remote server located in 

the company 

Java-based application 

[66] Sensor node TelosB 2.4 GHz GSM Cloud server - 

[67] SHT11  GPRS, WSN  - 

[68] CC2650 Bluetooth, Wi-Fi Cloud server Matlab 

[69] FTC-001 Wi-Fi MongoDB, NoSQL and 

SQL DBs 

Express - Node.js based on Socket.IO 

[70] Intelleflex XC3 RFID, Wi-Fi Cloud servers -  

[71] EOC biosensor Wi-Fi FIFO and flash EEPROM 

memory 

Flask Station mobile app 

[72] DS18B20  ZigBee  MS SQL DB C# in Microsoft Visual Studio 2008 

[73] - ZigBee ERP server - 

[74] EPCglobal UHF Class 1  GSM, GPRS EPCIS based system EPCIS system available through web 

interface. 

[75] Sensor MTS400 and 

MS5534B 

ZigBee, IEEE Local HDD Matlab 

[76] - RFID Database server Mobile app   

[77] MSP430 ZigBee, IEEE Terminal PC’s API TinyOS platform 
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[78] MSP430, MM1001, MICS-

5914 

RFID   Local HDD Smart Monitoring System 

[79] Waspmote sensor XBee 868 radio Cloud servers SmartWine 

[80] iButton DS1922L and CMS 

sensor 

WSN, RFID WSN - 

[81] Platinum resistance 

temperature detector (RTD)  

Serial communication Local HDD LabVIEW 8.2 

[82] Volumetric sensor RFID, GPRS, GPS Database server Operations center traceability software 

[83] - RFID, GPRS Backend system - 

[84] MTS420 board - Sensirion 

SHT 

ZigBee Local HDD - 

*Serial communication includes USB and RS232.  

**Database servers can include physical (HDD) or virtual (cloud) databases. 

 

At its basic level, a sensor is a detection device that can measure physical or chemical information 

related to the sample and transform this information into an electrical signal output that can be read 

and interpreted by another device such as a computer [101]. Table 2 presents the different 

technologies employed across the various layers of IoT, from sensors to data transmission technologies 

to databases and software applications. From Table 2 it can be seen that a wide range of sensing 

technologies was investigated by the studies at different stages of the food chain. In addition, most of 

the sensor setups deployed are bespoke to the study, thus finding commonalities between them can 

be challenging.  

While there is not a de-facto choice for these sensors, popular gas composition and concentration 

sensors include the MQ-series, for instance, MQ-2, MQ-5, MQ-7, MQ-135, MQ-136, MQ-137, and MQ-

138; which were cited 7 times in the total. These sensors are suitable to detect, measure, and monitor 

a wide range of gases present in air like methane, ammonia, benzene, carbon dioxide, etc. Due to its 

high sensitivity and fast response time, it is appropriate for different applications [102]. Another gas 

monitoring device extensively applied in the studies under analysis was the ATI sensor. These sensors 

are normally applied to detect oxygen, carbon dioxide and ethylene levels and are designed to detect 

gases up to 20 ppm [102]. 

The most applied sensors in this literature review to determine the temperature along the food supply 

chain consisted of a range of DHT (for instance DHT-11 and DHT-22) and DS (for instance DS18B20 and 

DS1922L) sensors. The DHT sensors are made of two parts, a capacitive humidity sensor and a 

thermistor [103]. Commercially available IoT sensors commonly incorporate both parameters. A DHT 

sensor was employed by Catania et al. [36] to measure the surrounding air and transmit it to a 

microcontroller that spits out a digital signal with the temperature and humidity. These sensors are low 

cost, very basic and slow, but are good for users who want to do basic data logging [101]. The two 

versions look similar and have the same pinout, but the DHT-22 is of higher accuracy (±0.5°C, 2-5% RH) 

and good over a slightly larger range of temperature (-40 to 125°C) and humidity (0-100%) compared 

to the DHT-11 (±2°C, 5% RH; 0-50°C, 20-80% RH) [105]. 

The DS18B20 sensor was also widely used in the studies. It is a device that can measure temperature 

with a minimal amount of hardware and wiring. These sensors use a digital protocol called 1-wire to 

send the data readings directly to the development board without the need of an analog-to-digital 
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converter or other extra hardware. Its accuracy ranges from -10 to 85 °C [106]. The DS1922L on the 

other hand, is a self-sufficient system that measures temperature and records the result in a protected 

memory section and the temperature range is -40 to 85°C [107]. Xiao et al. [72] used a DS18B20 to 

evaluate the temperature of seafood products (cod) during transportation, while Hafliðason et al. [80] 

applied a DS1922L to study the temperature of tilapia during transportation and storage. Both sensors 

were found to be efficient for the determination of temperature during the transportation of 

refrigerated products, but the second offers a broader range of temperatures. 

As shown above, there are many different components available on the market and the sensing 

parameters and their corresponding ranges of detection will define what actual sensors are the most 

recommended for each type of application. 

4.1 Sensing parameters 

 

Figure 8 shows the parameters that were monitored in each selected paper for food quality 

preservation. The parameters presented in the column “others” include backscatter power, ripeness, 

sound, tissue moisture, color, acceleration and radiation. Parameters are shown left to right by order 

of importance in count numbers.  

As can be seen from figure 8, the most frequently measured parameter in the reviewed articles was 

the temperature (n=48), which appeared in 81% of the selected papers. This can be explained by its 

crucial importance in food perishability and freshness, being paramount for microbiological growth and 

activity. For instance, concerning fruit and vegetables, the temperature is the most important factor to 

monitor and maintain within recommended ranges after harvest [28]). In fact, post-harvest losses have 

been estimated to account for approximately 25 % of food production worldwide [77], and hence the 

need to monitor temperature effectively along the fruit and vegetables’ supply chain. As known, 

temperature is also a very important factor for cold chain storage and transportation of meat products 

to prevent spoilage. Several IoT systems were deployed for meat related applications in the selected 

articles (n=9), and nearly all of them, with the exception of one, included temperature as a monitoring 

parameter. Similarly, fish and shellfish storage and transportation applications also incorporated 

temperature (n=7) as a sensing parameter. In general, temperature is a crucial factor for the average 

life of all food types as indicated by the Hazard Analysis and Critical Control Points (HACCP) guidelines 

[62]. 
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Figure 8 Triple nested pie chart showing all the sensing parameter combinations used in the selected articles. 

With regard to the transport of refrigerated food, commonly, refrigerated trucks and facilities are set 

at a fixed temperature, which may not be optimal for all types of products to best preserve their safety 

and quality [57,74]. Tsang et al. [57] observed, however, that it can be challenging for logistic 

companies to remain cost-effective when shipping multiple refrigerated foods with each type kept at 

their recommended storage temperature, and thus often a fixed temperature is used for all. The 

authors proposed an intelligent model for ensuring food quality when managing multi-temperature 

food distribution centres. The proposed system aided in reducing food spoilage by allowing key 

traceability and product information, collected and processed by IoT sensors, to be accessed by staff 

and customers in real-time. Thakur and Forås [74] evaluated an Electronic Product Code Information 

Services (EPCIS) system for real-time monitoring temperature and traceability of chilled lamb products 

during transportation. The authors concluded that such an EPCIS system proved effective for managing 

temperature data in cold supply chains, yet further hardware development efforts were needed to 

withstand the food production environment in an industry setting.  

Following temperature, relative humidity (RH), understood as the ratio of the current absolute 

humidity relative to the maximum humidity at a given temperature, was found to be the second most 

recurring parameter in the reviewed articles. Humidity also plays a huge role in microbiological growth 

and development, and therefore a factor of the utmost importance in food perishability, freshness and 

safety [108]. In the systems presented in the selected articles, RH was always measured in conjunction 

with temperature.  
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Environmental gas composition and concentration, e.g. oxygen (O2), carbon dioxide (CO2), ethane 

(C2H6) and volatile organic compounds (VOCs) constitute an important parameter to monitor and 

rapidly address accordingly for many foods such as fruits and vegetables. According to Afreen and 

Bajwa [27], however, little attention has been paid to factors other than temperature and relative 

humidity in monitoring the quality of fruits and vegetables in cold storage. Hence, the authors 

presented a real-time IoT system to help overcome the loss of perishable foods also including 

parameters other than temperature and RH such as concentration of CO2 and light intensity. Likewise, 

Torres-Sanchez et al. [28] presented a wireless platform system for real-time monitoring of multiple 

environmental variables, including gas concentration during the movement of foods and perishable 

goods along the supply chain. Wang et al. [38] proposed a multi-strategy control and dynamic 

monitoring system for environmental ethylene quantification during fruit storage. Ethylene is a 

phytohormone related to quality and storage life as it induces several chemical and physical changes 

during the ripening of the fruit, hence the importance of monitoring and control [38]. The authors 

employed a microcontroller as their main control unit, connected to a transmission module 

communicating via the 4G wireless network. 

Recording reliable location information is the basis for traceability and visibility in the supply chain. 

Although the location was not among the most frequent parameters in the selected articles (n=5), it 

must be noted that a large number of articles concerned the production or storage stages rather than 

transportation. Sensing of light intensity was found in 7 of the selected articles. For instance, light 

exposure intensity has been evaluated for agricultural product quality decay, along with temperature 

and RH by Venuto and Mezzina [62]. The authors developed a Wireless Sensor Networks (WSN) based 

system and reported an increment of about 1.2 days or 15% of the maximum product useful life of the 

expected expiration date with their automated, real-time system. Other, less frequently measured 

parameters, included pressure and weight, with four occurrences each (n=4); and microbiological 

concentration, vibration, and air velocity, being reported two times each (n=2). As previously 

mentioned, the column others referred to backscatter power, ripeness, sound, tissue moisture, color, 

acceleration and radiation. These sensing parameters were assessed only once and not repeated across 

the selected articles.  

Future work could encompass other parameters not widely exploited to date to cover broader classes 

of sensors and additional forms of food quality assessment. 
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Data communication – the communication layer  

In the context of IoT, sensor devices are connected in real-time to other electronic devices, forming an 

interconnected network to facilitate fast decision-making. Thus, sensors in IoT need to integrate 

communication technologies that allow continuous, rapid data transfer, as opposed to “non-IoT” 

enabled systems relying on data logging for later retrieval. Figure 9 presents the communication 

options most frequently investigated for sensor implementation by the literature under analysis. 

 

Figure 9 Communication options for IoT applications. 

 

Real-time data transfer is commonly achieved through the use of different wireless communication 

technologies such as Wi-Fi, Radio Frequency Identification (RFID), among others [109]. In general, 

wireless communication has been the preferred option opposed to wired transmission in recent times 

since it provides a higher degree of flexibility and not necessarily at a higher cost [45]. 

Among the wireless communication technologies found throughout the literature specific to IoT 

applications in the food supply chain, as seen in Figure 9, the most frequently used systems were those 

based on cellular communication technologies. By combining GPRS, 3G/4G/5G and GSM into a single 

category, it was observed that 25.8% of the studies used these technologies. The Global System for 

Mobile (GSM) describes the protocols for second-generation (2G) digital cellular networks. It was used 

by Jedermann et al. [66] to determine the quality of bananas during transportation. The General Packet 

Radio Services (GPRS) is a packet-switching protocol still commonly used for wireless and cellular 
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communication services on the 2G and 3G network’s global systems. However, over the last years, GSM 

and GPRS have mainly been superseded by 4G and 5G mobile data technologies [110]. Tsang et al. [58] 

used GPRS to evaluate fruits during the transportation stage, while Wang et al. [61] used it to evaluate 

the quality of peaches during all stages of the supply chain. The mobile networks (3G, 4G and 5G) 

comprise mobile data connections that use a network of phone towers to pass signals, ensuring a stable 

and relatively fast connection over long distances [110]. Each generation differs from the others based 

on its capacities, e.g. speed (lower latency), network volume (higher bandwidth) and accessibility 

(longer range of service).  

Wi-Fi communication was also popular amongst researchers, noted by the 21.5% share of the screened 

studies. As stated by Torres-Sanchez et al. [28], the main advantage of using Wi-Fi networks is the 

widespread and easy to install infrastructure. In fact, the authors developed a flexible multi-parameter 

system able to exploit this extensive availability of Wi-Fi networks along the postharvest chain; that is, 

a system capable of communicating and sending data via Wi-Fi at multiple locations. However, the 

authors also indicated its disadvantages in terms of energy consumption compared to other wireless 

technologies, e.g. SigFox, LoRa or ZigBee. To overcome this challenge, the authors introduced a system 

that incorporated synchronization algorithms to reduce the total amount of time Wi-Fi transceivers 

were online, receiving and sending information [28]. 

ZigBee was also found in 11.8% of the studies under analysis. This communication technology is a 

wireless IoT network-based system that was designed as an open worldwide standard based on IEEE 

802.15.4 protocol. Its current use is widely spread in smart home, agriculture and medicine, among 

other industries. While other wireless communication technologies were designed for achieving higher 

distances or speed, ZigBee is committed to achieving low-speed, short-distance wireless network 

transmission, but offering low-power and low-cost applications in battery-powered devices. 

Another of the most frequent systems was those based on RFID (10.8% of the total studies). RFID 

technology is a flow control technology widely used in food logistics as it enables traceability 

throughout the production chain from source to consumer [111]. Oftentimes, installing appropriate 

IoT systems is off-limits to small agribusiness given their high initial investment costs [42]. For this 

reason, Urbano et al. [42] presented the design and implementation of a cost-effective traceability 

system based on RFID for cold chain monitoring applications. As the authors mentioned, they chose 

RFID because of its affordability, maturity and wide adoption in the industry, and their efforts revolved 

around presenting an economical system. However, a drawback that the authors reported was low 

memory associated with the RFID chips. 

Bluetooth is a short-range wireless technology standard used for transmitting data over small distances 

between stationary and mobile devices [112] and was cited in 7% of studies. It was used by Markovic 

et al. [44] to monitor the quality of meat during transportation. Additionally, it was combined with Wi-

Fi in three other studies [52,55,68]. Wireless Sensor Networks (WSN) was also found in a number of 

studies (6.5%). It is formed by arrays of sensors interconnected by a wireless communication network. 
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More specifically, WSNs are made up of sensor “nodes” where each of them shares sensor data and 

consists of one or more sensing units, an embedded processor, and low-power radios. The nodes can 

act as information sources but also as “information sinks”, receiving dynamic configuration information 

from other nodes or external entities [113]. Advantages include ease of deployment, low device 

complication and low consumption of energy [114]. Table 3  presents the characteristics of the main 

communication technologies available on the market in terms of frequency, data rate, range, energy 

consumption, etc.  

 

Table 3. Communication technologies’ main characteristics. Adapted from Kazeem et al. [115] and 

Singh et al. [115,116]. 

  

Technical features Wi-Fi RFID Zigbee GPRS/GSM Bluetooth 

Standard IEEE 802.11 Several IEEE 802.15.4  - IEEE 
802.15.1 

Frequency 2.4 GHz 13.56 MHz 868/915 MHz, 2.4 
GHz 

850-1900 MHz 2.4 GHz 

Data rate 2-54 Mbps 423 kbps 20-250 kbps 20-85 kbps 1-24 Mbps 

Transmission range 20-100 m 1 m 10-20 m 10 m 8-10 m 

Energy consumption High Low Low Low Medium 

 

Bluetooth, ZigBee and Wi-Fi protocols have spread spectrum techniques in the 2.4 GHz band, which is 

unlicensed in most countries and known as the industrial, scientific, and medical (ISM) band. Bluetooth 

uses frequency hopping (FHSS) with 79 channels, while ZigBee and Wi-Fi use a direct sequence spread 

spectrum (DSSS) with 16 and 14 channels, respectively [117]. Based on the bit rate, GPRS and ZigBee 

are suitable for low data rate applications (such as mobile devices and battery-operated sensor 

networks). On the other hand, for high data rate implementations (such as audio/video surveillance 

systems), Wi-Fi and Bluetooth would be better solutions.  

As for range, it can be distinguished between short-range networks such as Bluetooth, ZigBee, RFID, or 

long-range such as Wi-Fi. In general, Bluetooth and ZigBee are intended for WPAN communication 

(about 10m), while Wi-Fi is oriented to WLAN (about 100m). However, ZigBee can also reach 100m in 

some applications [118]. ZigBee and RFID are designed for portable devices with short ranges and low 

battery power. It therefore has a very low power consumption and, in some situations, has no 

measurable impact on battery life. Wi-Fi and Bluetooth, on the other hand, are made to support devices 

with a strong power supply and longer connections. 
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Therefore, it is not possible to determine which communication technology is superior because the 

suitability of network protocols is greatly influenced by real-world applications and many other factors 

need to be taken into account, such as, network re-liability, roaming capability, price and installation 

costs. 

 

4.3 Data storage – the storage layer  

As previously mentioned, sensors in an IoT network are continuously collecting and sending 

information to be processed and modelled through appropriate algorithms, which results in massive 

amounts of data over time; hence, in the context of IoT, the term “big data” is often employed [119]. 

To allow for storage and subsequent analysis of big data, IoT architectures contain a dedicated storage 

layer which often employs database management tools with data being stored either locally or 

remotely.  

In general, it can be seen in Table 2 that authors chose to store data either locally, using physical servers 

such as hard disk drives, single-board computers, and databases residing on local drives or local area 

networks; or remotely, using cloud-based platforms or remote database servers. The use of PC-based 

or local hard disk drives (HDD) options was seen across 10 (17%) of the selected papers. An example of 

single-board computers was found in the warehouse management system proposed by De Venuto and 

Mezzina [62]. The authors employed a Raspberry Pi 2 B+ as the central control unit where a set of 

Python 2.7 scripts were implemented for the computing of product shelf-life modelling, first-to-expire 

first-out management and automatisation of pallet transporters for displacement of perishable 

products.  

Although a wide diversity of data management solutions was found, among the range of possibilities 

reported in Table 2, one of the preferred options was relational database systems (n=5) such as 

Microsoft Structured Query Language database (MS SQL DB) and MySQL server. Relational databases, 

often referred simply as SQL databases after the query language they are based on, are regarded as 

highly efficient for storage and management of structured data, i.e. predefined and formatted into 

precise table fields, delivering data consistency and complex query execution while facilitating the 

subsequent application of algorithms or Machine Learning (ML) techniques at the same time [120]. SQL 

database softwares retrieve and store data from other software applications, which may run either on 

the same computer or on another computer across a network. As an example of a SQL database 

implementation, Lu et al. [37] used Microsoft SQL server management studio for storing and querying 

data in their proposed real-time temperature and humidity monitoring system of a smart refrigerator. 

In contrast, a larger number of publications employed cloud server platforms (n=27) such as IBM cloud, 

Firebase, ThingSpeak, etc. In this regard, a higher degree of flexibility may be required when working 

with large sensor generated datasets consisting of not necessarily structured data. NoSQL databases, 
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which were used in several of the selected research articles in Table 2, allow management of 

unstructured data, or data of low structuredness level. To do so, it prioritises data availability at the 

expense of consistency, yet achieving stable, fast read and write operations when dealing with copious 

amounts of data data [69,120]. Specifically, Alfian et al. [69] employed MongoDB which is a flexible 

open-source NoSQL database that stores data based on collections and documents rather than the 

two-dimensional row and column approach of relational databases [121]. This way, allowing storage 

of the large volumes of unstructured sensor data continuously collected from multiple sensors in their 

proposed real-time monitoring system of perishable products [69]. Likewise, the Firebase Database, 

which is a NoSQL cloud database, was implemented by Afreen and Bajwa [27]. Elasticsearch was also 

used once in the literature, in the study by Baire et al. [51]. Although more commonly regarded as a 

search and analytics engine, Elasticsearch constitutes an open-source tool, built using Java, that 

supports storage of data in an unstructured NoSQL format [122].  

As it was observed, the large majority of the studies under analysis have selected cloud databases 

instead of traditional databases to store and manage their information. The first observed pro of using 

a cloud is that the data stored in the cloud can be accessed from wherever there is an internet 

connection [123]. It is also extremely scalable and elastic, giving the opportunity to start small and 

expand the database if more space is required, mitigating the risk and uncertainties of investing in IT 

equipment [124]. A final pro is that data is also stored remotely and never stored on the computer, 

meaning that it will be safe in the cloud if there are technical issues [124]. On the other hand, one 

disadvantage of using cloud databases is the reliance on an internet connection. If the connection is 

not strong, some difficulties in accessing the data can be observed. However, some software already 

allows offline access and synchronises the edits later.  

On the other hand, the first advantage of using a traditional database is the speed you can 

up/download data to the server [125]. Having a local server on-site can also increase security because 

only the organisation can access it physically and digitally [125]. In addition, the companies have total 

control over the system setup, to make sure it fits their exact needs. The main con of having a local 

database is needing to install it and then maintain it, as the hardware can be costly and if problems 

arise there is no cloud provider to handle maintenance requests. Although there is a wide range of 

equipment options in the market, prices can significantly vary depending on the supplier and 

specifications of such equipment depending on the needs of the desired local physical server and 

storage capacity. Thus, cloud databases present one of the best solutions for small food companies 

who are creating new goods but lack the financial capacity to invest in uncertain projects. The prices of 

the cloud servers can be lower, varying from free trials with limited data capacity (e.g. MongoDB and 

IBM) to various plans depending on an extensive range of features related to apps, cloud, connection, 

device management, etc. ThingSpeak, for example, has an academic license of 250 $/year, while the 

standard version can be more expensive [126]. In other databases, such as Firebase and Ledger, the 

users pay only for what they use and there are no minimum fees or mandatory service usage, the prices 

in those cases are $5 and $0.09 for each GB/month, respectively [127,128]. 
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4.4 Applications and software – the application and control layer 

The software and mobile applications column found in Table 2 refer to all of the tools that researchers 

used for extracting, analysing, modelling, and visualising the data to ultimately deliver the application 

layer of their IoT architectures. In general, it was found that the authors used an extensive variety of 

options. 

As data keeps being collected and stored into appropriate databases, for executing continuous 

monitoring and control of parameters, algorithms or ML techniques can be applied to extract insights, 

identify patterns or make predictions, among others. Among the ML techniques used in Table 2, the 

authors chose supervised learning classification and regression algorithms including Naïve Bayes, ID3, 

XGBoost, multiple linear regression, non-linear regression, CNN-SVM and others to gain further 

understanding about the collected data. For example, Torres-Sánchez et al. [41] developed a multiple 

non-linear regression model from temperature sensor data to predict the reduction in shelf life of 

perishables when temperature conditions varied from the theoretical set-point during transportation 

along the food supply chain. In other words, the authors used this model to find a correlation between 

temperature and loss of shelf life. Another algorithm application can be found in the study by Feng et 

al. [43], which used the combination or hybrid ML algorithm: CNN-SVM (convolutional neural network 

and support vector machine). The CNN-SVM hybrid is often used to exploit the main advantages of 

each algorithm, that is, CNN as a powerful tool for feature selection and SVM as an effective classifier. 

The authors used this technique to evaluate the freshness of salmon during (IoT-enabled) cold storage 

and classify each salmon sample according to levels of freshness. Aytaç and Korçak [30] tested the 

accuracy of both Naïve Bayes and decision trees for predicting restaurant demand. In this work, the 

models were trained on waste bin weight data, incremental sales data, and external events data 

scraped from the internet and social media which could influence demand. The training data were 

manually labelled with a service-level indicator. Once training was completed, the model was able to 

predict the production service level required without any human intervention, meaning arriving 

customers did not need to wait for food to be produced while minimising the amount of food waste 

generated due to the product’s short lifetime. In addition, the study also successfully utilised an 

unsupervised learning approach to perform outlier detection based on k-means clustering analysis. 

It was also observed that researchers in the selected studies preferred to employ either Matlab or 

Python programming language for data analysis. As for the usage preference among these, it was 

equally split between Matlab (n = 4) and Python (n = 4), the latter including Spyder, MicroPython and 

Python 2.7. One unique approach is noted by Banga et al. [45] who identifies insect infestation during 

the storage of legumes using acoustic detection methods. For this approach, the authors use Audacity 

for signal processing, followed by the Pratt tool for spectrogram signal analysis based on Linear 

predictive coding.   
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Additionally, visualisation tools can be utilised to facilitate the interpretation of data, not only by the 

scientists or IoT engineers that developed the system, but also as part of a user-friendly software or 

mobile applications, which could also be employed by potential users in the food supply chain such as 

farmers, producers or distributors, to allow real-time access to the environmental or product 

conditions. The authors utilised or developed a mixture of real-time visualisation applications on 

mobile and desktop using various technologies. Of note, the authors mention node.js and Flask for the 

development of Web-based applications and Java and C# for the development of bespoke offline 

Windows applications. Off the shelf products like Labview and Matlab’s Simulink have also been utilised 

for visualisation on the application layer, as noted by Ibba et al. [35], Jilani et al. [52], and Bustamante 

et al. [81]. Android Studio is mentioned to be used for the development of mobile applications. 

It is also worth mentioning the service provided by IBM, the IBM Watson IoT Platform (n = 3), which 

allows users to connect devices via API calls to see live and historical data and create applications within 

IBM or other clouds. For instance, Morillo et al. [63] used the IBM Watson IoT Platform to collect, 

process, and visualise the smartphone readings sent to the IBM cloud via 3G or 4G networks of a meal 

distribution trolley monitoring system in hospital settings [63].  

In summary, it was seen that a wide array of ML algorithms, programming languages, visualisation tools 

and applications were deployed by researchers. While common tools like Python, Matlab, and Labview 

are recurringly utilised in the articles, each application tends to be unique, perhaps explained by the 

distinct nature and diversity of the use cases under review. With many different types of produce, 

supply chain stages, sensing parameters, hardware, communication technologies, etc. being the focus 

of the research, there is no standard approach to delivering the application layer in a food supply chain 

IoT system as to date, with a high degree of novelty and experimentation still under development. 
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5. Conclusion 
This report has presented an overview of the current state of IoT systems deployed in the food supply 

chain in order to minimise food waste production. It has identified a number of new themes and 

research opportunities that can be pursued by future researchers in this field. As previously seen, IoT 

implementation in food supply chains focuses on high perishability products, i.e. fruits (31.7%), 

vegetables (15.9%), meat (12.2%) and seafood (9.8%). Although it can be difficult to maintain the 

microbiological integrity of fresh products, IoT technologies have demonstrated its helpfulness and 

practical approach to preventing FLW from different food categories. Future studies could expand their 

research to encompass other food products in order to determine the effects of using real-time 

monitoring technologies on food waste reduction. In addition, different food supply chain stages can 

be analysed in future scenarios, as most of the studies concentrated their efforts on the storage (38%) 

and transportation (37%) stages.  

The research has also shown that current sensing technologies seem to be predominantly focused on 

temperature (81%) and humidity (60%), followed by gas composition/concentration (31%) and light 

intensity (12%). However, other sensing parameters are also important, and hence future studies can 

focus on further development of these sensing parameters. In addition, opportunities arising from the 

integration of spectroscopic and imaging techniques in IoT networks can be exploited. Several of these 

techniques have been broadly researched for real-time food monitoring applications. Examples include 

Raman, Near-infrared (NIR), Fourier transform infrared (FTIR), 3D fluorescence and Laser-induced 

breakdown spectroscopy (LIBS), among others.  

Regarding communication transfer, different wireless communication technologies were used, but the 

most frequently were cellular technologies (25.8%), WiFi (21.5%), Zigbee (11.8%) and RFID (10.8%). It 

was observed that the suitability of network protocols is greatly influenced by real-world applications 

and many factors need to be further studied to determine the most appropriate, such as, network 

reliability, roaming capability, price and installation costs. Regarding data storage and control, a great 

part of the studies relied on cloud servers and remote databases to store and manage their 

information. This is mainly due to its advantages in terms of flexibility, scalability and costs, which is 

highly recommended for small food companies who are creating new goods but lack the financial 

capacity to invest in new projects. 

Overall, the findings demonstrated this technology's enormous promise and successful applications. 

IoT solutions are expected to influence not only the way food is produced, managed, transported and 

stored, but also social, environmental, and economic impacts. As a result, IoT systems applied to the 

food industry are becoming increasingly common in the existing literature. However, similar systematic 

literature reviews will need to be undertaken focusing on other aspects related to the applications of 

IoT sensors for reducing FLW in order to gain a complete picture of the domain. These include a review 

of cloud storage technologies, artificial intelligence (AI) technologies and data analytics technologies.     
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